Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol In Vitro ; 95: 105739, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38042355

RESUMO

PURPOSE: The inhibitory effect of Apatinib on cytochrome P450 (CYP450) enzymes has been studied. However, it is unknown whether the inhibition is related to the major metabolites, M1-1, M1-2 and M1-6. METHODS: A 5-in-1 cocktail system composed of CYP2B6/Cyp2b1, CYP2C9/Cyp2c11, CYP2E1/Cyp2e1, CYP2D6/Cyp2d1 and CYP3A/Cyp3a2 was used in this study. Firstly, the effects of APA and its main metabolites on the activities of HLMs, RLMs and recombinant isoforms were examined. The reaction mixture included HLMs, RLMs or recombinant isoforms (CYP3A4.1, CYP2D6.1, CYP2D6.10 or CYP2C9.1), analyte (APA, M1-1, M1-2 or M1-6), probe substrates. The reactions were pre-incubated for 5 min at 37 °C, followed by the addition of NAPDH to initiate the reactions, which continued for 40 min. Secondly, IC50 experiments were conducted to determine if the inhibitions were reversible. The reaction mixture of the "+ NADPH Group" included HLMs or RLMs, 0 to 100 of µM M1-1 or M1-2, probe substrates. The reactions were pre-incubated for 5 min at 37 °C, and then NAPDH was added to initiate reactions, which proceeded for 40 min. The reaction mixture of the "- NADPH Group" included HLMs or RLMs, probe substrates, NAPDH. The reactions were pre-incubated for 30 min at 37 °C, and then 0 to 100 µM of M1-1 or M1-2 was added to initiate the reactions, which proceeded for 40 min. Finally, the reversible inhibition of M1-1 and M1-2 on isozymes was determined. The reaction mixture included HLMs or RLMs, 0 to 10 µM of M1-1 or M1-2, probe substrates with concentrations ranging from 0.25Km to 2Km. RESULTS: Under the influence of M1-6, the activity of CYP2B6, 2C9, 2E1 and 3A4/5 was increased to 193.92%, 210.82%, 235.67% and 380.12% respectively; the activity of CYP2D6 was reduced to 92.61%. The inhibitory effects of M1-1 on CYP3A4/5 in HLMs and on Cyp2d1 in RLMs, as well as the effect of M1-2 on CYP3A in HLMs, were determined to be noncompetitive inhibition, with the Ki values equal to 1.340 µM, 1.151 µM and 1.829 µM, respectively. The inhibitory effect of M1-1 on CYP2B6 and CYP2D6 in HLMs, as well as the effect of M1-2 on CYP2C9 and CYP2D6 in HLMs, were determined to be competitive inhibition, with the Ki values equal to 12.280 µM, 2.046 µM, 0.560 µM and 4.377 µM, respectively. The inhibitory effects of M1-1 on CYP2C9 in HLMs and M1-2 on Cyp2d1 in RLMs were determined to be mixed-type, with the Ki values equal to 0.998 µM and 0.884 µM. The parameters could not be obtained due to the atypical kinetics of CYP2E1 in HLMs under the impact of M1-2. CONCLUSIONS: M1-1 and M1-2 exhibited inhibition for several CYP450 isozymes, especially CYP2B6, 2C9, 2D6 and 3A4/5. This observation may uncover potential drug-drug interactions and provide valuable insights for the clinical application of APA.


Assuntos
Citocromo P-450 CYP3A , Microssomos Hepáticos , Piridinas , Humanos , Ratos , Animais , Microssomos Hepáticos/metabolismo , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP2D6/farmacologia , Citocromo P-450 CYP2E1/metabolismo , Isoenzimas/metabolismo , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP2B6/metabolismo , NADP/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo
2.
Drug Des Devel Ther ; 16: 2031-2042, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795848

RESUMO

Objective: To evaluate the effect of axitinib on buspirone metabolism in vitro and in vivo. Methods: A microsome incubation assay was performed to study the effect and mechanism of axitinib on buspirone metabolizing. In vivo, buspirone was administered with or without axitinib to Sprague-Dawley rats. Plasma samples were collected and subjected to ultra-performance liquid chromatography-tandem mass spectrometry. Results: In both human liver microsomes (HLMs) and rat liver microsomes (RLMs), axitinib (100 µM) decreased buspirone hydroxylation and N-dealkylation by >85%. Axitinib inhibited buspirone hydroxylation and N-dealkylation, with an IC50 of 15.76 and 9.74 for RLMs, and 10.63 and 9.902 for HLMs. Axitinib showed noncompetitive inhibition of both 6'-hydroxylation and N-dealkylation. Moreover, coadministration of axitinib and buspirone led to an increase in the maximum plasma concentration (C max ) and area under the plasma concentration-time curve (AUC) of buspirone by 4.3- and 5.3-fold, respectively, compared with the control group. Conclusion: Axitinib inhibited buspirone metabolism in vivo and in vitro, which increases the risk of the side effects of buspirone in the clinic. When coadministered with axitinib, a lower dosage of buspirone should be defined to avoid a toxic response. Axitinib is suspected to function as an inhibitor of CYP3A4.


Assuntos
Buspirona , Microssomos Hepáticos , Animais , Axitinibe/farmacologia , Buspirona/metabolismo , Buspirona/farmacologia , Citocromo P-450 CYP3A/metabolismo , Microssomos Hepáticos/metabolismo , Ratos , Ratos Sprague-Dawley
3.
Infect Drug Resist ; 12: 2809-2817, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31571937

RESUMO

BACKGROUND: Cytochrome P450 3A4 (CYP3A4) appears to be genetically polymorphic, which in turn contributes to interindividual variability in response to therapeutic drugs. Loperamide, identified as a CYP3A4 substrate, is prone to misuse and abuse and has high risks of life-threatening cardiotoxicity. METHODS: Thus, this study is designed to evaluate the enzymatic characteristics of 29 CYP3A4 alleles toward loperamide in vitro, including the 7 novel CYP3A4 variants (*28-*34). The incubation system (containing CYP3A4 enzyme, cytochrome b5, 0.5-20 µM loperamide, potassium phosphate buffer and nicotinamide adenine dinucleotide phosphate) was subject to 40-mins incubation at 37°C and the concentrations of N-demethylated loperamide were quantified by UPLC-MS/MS. RESULTS: As a result, CYP3A4.6, .17, .20 and .30 showed extremely low activity or no activity and the rest of CYP3A4 variants presented varying degrees of decrements in catalytical activities when compared with CYP3A4.1. CONCLUSION: As the first study to identify the properties of these CYP3A4 variants toward loperamide metabolism, our investigation may establish the genotype-phenotype relationship for loperamide, predict an individual's capability in response to loperamide, and provide some guidance of clinical medication and treatment for loperamide.

4.
Chem Res Toxicol ; 32(8): 1583-1590, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31293154

RESUMO

Cabozantinib is a multityrosine kinase inhibitor and has a wide range of applications in the clinic, whose metabolism is predominately dependent on CYP3A4. This study was performed to characterize the enzymatic properties of 29 CYP3A4 alleles toward cabozantinib and the functional changes of five selected alleles (the wild-type, CYP3A4.2.8.14 and .15) toward cabozantinib in the presence of ketoconazole. Cabozantinib, 1-100 µM, with/without the presence of ketoconazole and CYP3A4 enzymes in the incubation system went through 30 min incubation at 37 °C, and the concentrations of cabozantinib N-oxide were quantified by UPLC-MS/MS to calculate the corresponding kinetic parameters of each variant. Collectively, without the presence of ketoconazole, most variants displayed defective enzymatic activities in different degrees, and only CYP3A4.14 and .15 showed significantly augmented enzymatic activities. With the presence of ketoconazole, five tested CYP3A4 alleles, even CYP3A4.14 and .15, exhibited obvious reductions in intrinsic clearance. Besides, we compared cabozantinib with regorafenib in relative clearance to confirm that CYP3A4 has the property of substrate specificity. As the first study of CYP3A4 genetic polymorphisms toward cabozantinib, our observations can provide prediction of an individual's capability in response to cabozantinib and guidance for medication and treatment of cabozantinib.


Assuntos
Anilidas/metabolismo , Citocromo P-450 CYP3A/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Piridinas/metabolismo , Alelos , Citocromo P-450 CYP3A/genética , Variação Genética/genética , Humanos , Cetoconazol/metabolismo , Cinética , Fígado/enzimologia
5.
Chem Biol Interact ; 310: 108744, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31299239

RESUMO

The epidemic of loperamide abuse and misuse in the patients for the alternative to opioids has become an increasing worldwide concern and has led to considerations about the potential for drug-drug interactions between loperamide and other combined drugs, especially inhibitors of cytochrome P450 (CYP450) enzymes, such as axitinib. This study assessed the effects of axitinib on the metabolism of loperamide and its main metabolite N-demethylated loperamide in rats and in rat liver microsomes (RLM), human liver microsomes (HLM) and recombinant human CYP3A4*1. The concentrations of both compounds were determined by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The exposures (AUC(0-t), AUC(0-∞) and Cmax) of loperamide and N-demethylated loperamide showed a conspicuous increase when loperamide was co-administered with axitinib. The Tmax of loperamide increased while CLz/F decreased under the influence of axitinib. In vitro, axitinib inhibited loperamide metabolism with the IC50 of 18.34 µM for RLM, 1.705 µM for HLM and 1.604 µM for CYP3A4*1, and it was confirmed as a non-competitive inhibitor in all enzymes. Taken together, the results indicated that axitinib had an obvious inhibitory impact on loperamide metabolism both in vivo and in vitro. Thus, more attention should be paid to the concurrent use of loperamide and axitinib to reduce the risk of unexpected clinical outcomes.


Assuntos
Axitinibe/farmacologia , Loperamida/farmacocinética , Animais , Cromatografia Líquida de Alta Pressão , Citocromo P-450 CYP3A/metabolismo , Desmetilação , Interações Medicamentosas , Humanos , Loperamida/antagonistas & inibidores , Loperamida/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Ratos , Espectrometria de Massas em Tandem
6.
Basic Clin Pharmacol Toxicol ; 125(4): 337-344, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31058459

RESUMO

AIM: Regorafenib is a tyrosine kinase inhibitor that is mainly metabolized by CYP3A4. The genetic polymorphism of CYP3A4 would contribute to differences in metabolism of regorafenib. Previously, we had discovered several novel CYP3A4 variants. However, the catalytic characteristics of these 27 CYP3A4 variants on oxidizing regorafenib have not being determined. The purpose of this study was to investigate the catalytic characteristics of 27 CYP3A4 protein variants on the oxidative metabolism of regorafenib in vitro. METHOD: Wild-type CYP3A4.1 or other variants was incubated with 0.5-20 µmol/L regorafenib for 30 minutes. After sample processing, regorafenib-N-oxide, a primary metabolite, was detected by ultra-performance liquid chromatography-tandem mass spectrometry system. RESULT: CYP3A4.20 had no detectable enzyme activity compared with wild-type CYP3A4.1; five variants (CYP3A4.5, .16, .19, .24, .29) exhibited similar clearance value with CYP3A4.1; four variants (CYP3A4.14, .15, .28, .31) displayed increased enzymatic activities, while remaining variants showed markedly decreased intrinsic clearance values. CONCLUSION: This study is the first to investigate the function of 27 CYP3A4 protein variants on the metabolism of regorafenib in vitro, and it may provide some valuable information for further research in clinic.


Assuntos
Antineoplásicos/metabolismo , Citocromo P-450 CYP3A/genética , Compostos de Fenilureia/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Piridinas/metabolismo , Citocromo P-450 CYP3A/metabolismo , Humanos , Microssomos/metabolismo , Polimorfismo Genético , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
7.
J Pharm Biomed Anal ; 157: 165-170, 2018 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-29803908

RESUMO

Enasidenib, an oral product for treating Acute Myeloid Leukemia, has been approved by FDA in Aug, 2017. In this study, we set up an ultra-performance liquid chromatography-mass spectrometry (UPLC-MS/MS) method for measuring Enasidenib and imatinib (internal standard, IS), simultaneously. Enasidenib and imatinib were separated on an ACQUITY UPLC BEH C18 Column (2.1 mm × 50 mm, 1.7 µm, 132 Å). Mass detection was carried out by electrospray ionization in the position mode, and the multiple reaction monitoring transitions were m/z 474.23 → 456.17 and m/z 494.30 → 394.20 for Enasidenib and imatinib, respectively. Linearity (2 - 500 ng·mL-1, R2 > 0.999), precision and accuracy (RE < ±â€¯15%), extraction recovery (≥ 96.69%), matrix effect (≥ 96.47%) and stability (RE < ±â€¯10%) were validated which demonstrated the robustness of our method. This rapid, efficient and reliable UPLC-MS/MS method shows specificity and repeatability of Enasidenib in rat plasma and can be used in further pharmacokinetic studies.


Assuntos
Aminopiridinas/sangue , Plasma/química , Triazinas/sangue , Animais , Cromatografia Líquida de Alta Pressão/métodos , Mesilato de Imatinib/sangue , Limite de Detecção , Masculino , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...